KAPITOLA 5

Kritický pohled na údaje o složení dávné Země a její

atmosféry

V posledních desetiletích vzrostlo značnou měrou množství poznatků o dávné Zemi, které vytvářejí velmi důležitý zásadní pohled na teorie chemické evoluce. V této kapitole se budeme zabývat třemi důležitými otázkami. Nejprve vytvoříme časový rámec, neboli zjistíme po jakou dobu mohla probíhat chemická evoluce. Dále přezkoumáme chemické složení atmosféry prebiotické Země, abychom určili, zda bylo vhodné pro abiogenezi. Za třetí prošetříme důležitou otázku přítomnosti kyslíku na dávné Zemi a v její atmosféře. Zjištění pravděpodobných atmosférických podmínek pomůže určit výchozí podmínky pro další generaci prebiotických modelových experimentů. Mnohé pokusy, popsané v kapitole 3, jsou založeny na předpokladu silně redukujících podmínek na prebiotické Zemi a v její atmosféře.

Vytvoření časového rámce

Jedna z nejdramatičtějších změn, které od šedesátých let zasáhly evoluční teorii, spočívala v pochopení, jak krátká je doba, po kterou mohly probíhat abiogenní syntézy. Richard E. Dickerson prohlásil: "Nejnápadnějším rysem evoluce života na Zemi je, že proběhla tak rychle."1 Cyril Ponnamperuma z univerzity v Marylandu a Carl Woese z univerzity v Illinois předpokládají, že život může být stejně starý jako Země a že se doba jeho vzniku možná shoduje se zrodem naší planety.2 V této části prozkoumáme údaje, které podporují toto tvrzení.

Pomocí radiometrických metod bylo odhadnuto stáří kamenných meteoritů na 4,6 miliardy let.3 Pokud se Slunce, planety, meteority a jiné úlomky Slunce vytvořily z téhož primordiálního oblaku prachu zhruba ve stejnou dobu, byla by Země stará přibližně 4,6 miliardy let. V informacích o Zemi existuje obrovská mezera, která pokrývá dobu od jejího vzniku přes období prekambria až do doby před asi 0,6 miliardami let.4 Právě do této mezery spadají údaje o chemické evoluci.5 Až do konce šedesátých let byl za nejstarší důkaz života považován výskyt zkamenělých stromatolitů (fotosyntetizující řasy) ve 2,7 miliardy let starých vápencích v jižní Rhodesii.6 Koncem šedesátých let však několik vědců při zkoumání velmi starých hornin (3,2 miliardy let) nalezlo molekulární fosilie a mikrofosilie, tedy důkaz svědčící o minulém životě.

Molekulární fosilie

Molekulární fosilie (neboli chemické fosilie) jsou chemické sloučeniny nalezené v horninách, o nichž se soudí, že to jsou pozůstatky kdysi živé hmoty. Chemické látky, které mohou být důkazem života, jsou velmi různorodé. Existují však dvě možnosti, jak prokázat spojitost mezi nalezenými sloučeninami a živými organismy:

1. Tyto sloučeniny mohou být produkty odbourávání chemických látek nacházejících se v živých organismech. Isoprenoidy, např. pristan a fytan, jsou považovány za produkty štěpení chlorofylu. Isoprenoidy nalezené ve starých horninách mohou být tedy památkou na živé organismy. Ve velmi starých horninách lze nalézt i mnoho jiných chemických látek, které mají vztah k živým organismům, jako jsou porfyriny a deriváty steranu.

2. Metabolizmus živých organismů vždy selektivně upřednostňuje izotop uhlíku 12C před 13C. Zvýšený poměr 12C ku 13C v chemických látkách může tedy ukazovat na vztah k životním procesům.

Mikrofosilie

Mikrofosilie mohou také svědčit o minulém životě. Mikrofosilie jsou mikroskopické otisky, nalézané v horninách, které vypovídají o minulých formách života. Obvykle se jedná o velmi jednoduché, řasám podobné, kulovité či vláknité útvary, nalezené v horninách bohatých na uhlík. Byli bychom rádi, kdyby kromě jejich morfologických charakteristik zůstal zachován pro naše zkoumání i nějaký detail. To se však stane jen výjimečně. Přesto se následkem chemické analýzy a mikroskopického zkoumání velmi starých hornin bohatých na organické látky mění celý pohled na základy chemické evoluce.* Před nalezením mikrofosilií a molekulárních fosilií se většina vědců domnívala, že chemická evoluce probíhala 2 miliardy let.

* Jedná se však o velmi choulostivý problém, protože někdy může dojít k záměně anorganického materiálu za mikrofosilie (E.L. Merek, 1973. Bio.Science 23, 153; N. Henbest, 1981.New Scientist 92, 164)

Důkazy

Od šedesátých let byly nalezeny následující důkazy podporující myšlenku, že se život na Zemi objevil brzy po jejím vzniku:

1. 1967: Mikropaleontologická studie uhlík obsahujícího rohovce z "Fig Tree Series" v jižní Africe (stáří více než 3,1 miliardy let) prokázala přítomnost kulovitých mikrosfér. Schopnost fotosyntézy byla u těchto primitivních mikroorganismů prokázána geoorganickou analýzou a analýzou izotopů uhlíku.7

2. 1977: Shluk organických mikrostruktur opatřených stěnami, které pocházely ze svazijské plošiny z jižní Afriky, byl identifikován jako pozůstatek primitivních prokaryot. Horniny byly staré 3,4 miliardy let.8

3. 1979: Buňkám podobné inkluze v křemičitých vrstvách kvarcitu, který je součástí "Isua series" v jihozápadním Grónsku, byly složeny z biologických materiálů. Přítomné uhlovodíky se vyznačovaly vysokým poměrem mezi izotopy C12 a C13. Stáří bylo přibližně 3,8 miliardy let.9

4. 1980: Vědci nalezli v horninách v oblasti "North Pole" v Austrálii objekty podobné buňkám. Skály byly staré 3,5 miliardy let. Ještě více ohromila skutečnost, že mezi nimi bylo možné rozlišit pět různých druhů buněk. "To dokazuje, že život byl různorodý, hojný a z chemického hlediska skutečně pokročilý."10

5. 1980: V železitém dolomitickém rohovci z "Pilbara Block" v západní Austrálii se zachovala zkamenělá vrstva vláknitých mikroorganismů nazývaných stromatolity. Jejich stáří bylo odhadnuto na 3,4 až 3,5 miliardy let.11

Až do nedávna byly "kvasinkám podobné mikrofosilie" pocházející z oblasti Isua v jihozápadním Grónsku považovány za důkaz existence živých struktur. Někteří badatelé však nyní zpochybňují tuto interpretaci12 a naznačují, že se nejedná o zbytky prahorních živých forem. Proto jsou australské depozity staré 3,5 miliardy let považovány v současné době za nejstarší sedimenty obsahující přesvědčivé důkazy biologické činnosti. Přesto mnoho vědců věří, že život existoval před více než 3,8 miliardami let.

Doba trvání evoluce

Brooks a Shaw tvrdí, že nejstarší horniny na Zemi jsou staré pravděpodobně 3,98 miliardy let.13 Největší stáří, potvrzené pomocí izotopové techniky u hornin z oblasti Isua v Grónsku, bylo však 3,8 miliardy let.* V každém případě je možno téměř s určitostí tvrdit, i když to může znít překvapivě, že život byl na Zemi prakticky od počátku její existence. Před 3,98 miliardami let (od 4,6 do 3,98 miliard let) byla Země pravděpodobně příliš horká, než aby na ní mohl být život.14 Podle toho by se život objevil zhruba před 3,81 miliardami let. To znamená, že jen 170 milionů let se mohl život formovat abiotickou cestou. Podle Brookse a Shawa je tato doba "příliš krátká"15 pro abiogenní syntézy nezbytných prekurzorů, natož pro chemickou evoluci. Objev mikrofosilií, který potvrdil tento závěr, byl jedním z důvodů dramatické změny ve vědeckém myšlení, zdůrazněné Millerem: "Neudivilo by mě, kdyby život vznikl během pouhých 106 let (0,001 miliardy)."16 Jiní vědci se domnívají, že se jedná o období 107 až 108 let nebo méně poté, co Země zchladla. Např.: "Jestliže byl zemský povrch horký ještě před 4 miliardami let, vznikl život pravděpodobně zhruba před 3,9 miliardami let."17 Výzkum se nyní soustřeďuje na mechanismy které by vysvětlily tento "geologicky okamžitý" vznik života.

* Nedávno bylo stanoveno stáří zirkonu z oblasti australského Shieldu na 4,2 miliardy let. Chem.Eng.News, 22.dubna 1983, str.20; Science News, 18.června 1983, str.389.

Složení prebiotické zemské atmosféry

V posledních letech byla pomocí vesmírných sond zkoumána atmosféra několika planet sluneční soustavy. Výzkum se týkal těchto planet:

1. Mars (sondy Viking)
2. Venuše (sondy Pioneer a Venera)
3. Jupiter (sondy Voyager)
4. Saturn (sondy Voyager)

Získané informace vedly k přehodnocení vědeckých teorií týkajících se vzniku planet a jejich atmosféry. Např. výsledky měření koncentrace argonu a neonu na Venuši provedené sondou Pioneer otřásly představami o vytvoření současné atmosféry. James B. Polock z Amesova výzkumného centra (NASA) navrhl tři logické možnosti:18

1. Hypotéza primární atmosféry

Plyny současné atmosféry by mohly být pozůstatky předslunečné mlhoviny. Pokud by tomu tak bylo, byl by poměr mezi zastoupením argonu a neonu na Venuši, Zemi a Marsu velmi podobný jejich původnímu poměru v mlhovině a jejich současnému zastoupení na slunci. Jejich zastoupení v atmosférách uvedených planet je ale zcela odlišné od jejich zastoupení na slunci.

2. Hypotéza vnějšího zdroje

Plyny mohly být přineseny kometami a asteroidy bohatými na těkavé látky v údobí po výskytu meteorického roje T-tauridů, kdy planety na sebe strhávaly poslední části hmoty přítomné ve slunečním systému. Komety a asteroidy musely dopadat na všechny vnitřní planety přibližně ve stejném množství; proto očekáváme, že by planety měly obsahovat podobnou koncentraci vzácných plynů. Ve skutečnosti tomu tak ale není.

3. Hypotéza srůstání zrn

Současná pozemská atmosféra mohla vzniknout uvolněním plynů zachycených v puklinách původních hornin.

Podle Pollocka je tato poslední hypotéza jedinou, která neodporuje naším poznatkům. Označení "srůstání zrn" (grain accretion) je použito, protože zrna materiálu, který obsahoval těkavé látky, se shlukovala do malých těles (planetesimál), která dalším shlukováním vytvořila planety.19 Později se těkavé látky dostaly v důsledku vnitřního ohřevu na povrch. Původní zemskou atmosféru gravitační pole postupně rostoucí planety neudrželo. Zemská prebiotická atmosféra byla tedy ve skutečnosti sekundární a vznikla z plynů, které vystupovaly z vnitřku Země sopečnými krátery nebo difundovaly pláštěm zemského jádra. Tato teorie sekundární atmosféry byla v průběhu více než deseti let nejuznávanější teorií, a udržela se i po získání informací z Venuše, Marsu a jiných planet.

Přestože byl tento model obecně uznáván, objevily se návrhy i jiných zdrojů plynů. Např. neon zemské atmosféry mohl do značné míry pocházet z oblaků mezihvězdné hmoty.20 Dalším zdrojem plynů mohly být komety.21 Oro odhadl, že složení zemské atmosféry mohlo ovlivnit asi 1 000 meteoritů.22

Různé modely prebiotické zemské atmosféry

Na rozdíl od obecného přijetí modelu tvorby atmosféry uvolňováním plynů z hornin se názory na složení atmosféry během let značně měnily. Uvádíme příklady složení atmosféry, které byly navrženy během posledních třiceti let.

CO2-H2O atmosféra. Za předpokladu, že by sopečné exhalace měly na prebiotické Zemi stejné složení jako nyní, obsahovala by prebiotická atmosféra oxid uhličitý, vodní páru a menší množství H2S, SO2 a N2. Tento názor vyslovili Fox a Dose,23 Revelle, 24 Abelson25 a Brooks se Shawem.26

CH4-NH3-H2O atmosféra. Opačný názor zastávali Oparin,27 Urey,28 a Miller a Urey29. Tito vědci se domnívali, že z doby utváření Země se v atmosféře uchovalo malé, ale důležité množství vodíku. Jeho parciální tlak byl nejméně 10-3 atm (v současné atmosféře je asi 10-6 atm). Vodík by reagoval s uhlíkem, dusíkem nebo kyslíkem, čímž by se vytvářela atmosféra bohatá na metan (CH4), amoniak (NH3) a vodu (H2O).

Příznivci předchozího názoru samozřejmě s tímto závěrem nesouhlasili a tvrdili, že množství atmosférického vodíku bylo bezvýznamné a že neexistují žádné geologické důkazy existence metanu v prebiotické atmosféře.30

Tři stadia ve vývoji atmosféry. Třetí názor, zastávaný Hollandem,31 vznikl ve skutečnosti syntézou prvých dvou. Holland nesouhlasil se základním předpokladem první teorie, neboť prohlásil, že se směs sopečných plynů prebiotické Země nepodobala svým složením soudobým sopečným exhalacím. Své tvrzení založil na hypotéze, podle níž byly prebiotické sopečné exhalace, na rozdíl od současných sopečných plynů, v rovnováze s horkou tekutou horninou obsahující velké množství elementárního železa. Důsledkem toho byla atmosféra v prvním stadiu bohatá na metan (CH4) a v bezprostředně následujícím druhém stadiu bohatá na dusík (N2). Současná atmosféra představuje třetí stadium.

CO2-N2 atmosféra. Walker32 uskutečnil rozsáhlý výzkum vývoje atmosféry, z něhož vyplývá, že prebiotická atmosféra obsahovala H2O, CO2, N2 a 1 % H2. Sopečný původ 1 % H2 vedl Walkera k přesvědčení, že sopečné plyny obsahovaly tehdy více vodíku než dnes. Velké množství uvolněného CO2 tvořilo uhličitany, které se hromadily v oceánu při kondenzaci velkých objemů vody.

Podle tohoto názoru neobsahovala prebiotická atmosféra mnoho redukujících plynů, jako je metan nebo amoniak.33 Silně redukující atmosféra, složená z metanu a amoniaku mohla, jak naznačují soudobé fotochemické úvahy, existovat jen velice krátkou dobu, pokud taková prebiologická atmosféra vůbec existovala.34 Závěr, že prebiologická atmosféra obsahovala jen malá nebo vůbec žádná množství metanu a amoniaku, si získal Hollandův souhlas.35

Představa, podle níž nebyla prebiotická atmosféra silně redukující, představuje dramatickou změnu vzhledem k předchozí přijímané hypotéze. Tento posun v teoriích o složení prebiotické atmosféry vyvolal řadu komentářů a reakcí. Např.:

Nyní, poprvé po třiceti letech, se mění obecně přijímaná představa o primordiální polévce, která se opírala o atmosféru bohatou na vodík, složenou především z metanu (CH4) a amoniaku (NH3). Nová hypotéza předpokládá atmosféru chudou na vodík, která kromě toho, že neobsahuje kyslík, se podobá té současné.36

Žádný z geologických a geochemických důkazů nashromážděných v posledních třiceti letech nepodpořil existenci silně redukující prebiotické atmosféry... Myšlenku její existence podpořily pouze výsledky laboratorních pokusů.37

Vědci si musejí znovu promyslet některé své předpoklady. Chemikům vyhovovala stará představa redukující atmosféry, která podporovala evoluční experimenty.38

Sherwood Chang z Amesova výzkumného centra (Ames Research Center) z NASA pozoroval, že při modelových pokusech s neutrální atmosférou složenou z vody, dusíku a oxidu uhličitého vznikají pouze chemické sloučeninu typu amoniaku a kyseliny dusičné.39 Joseph Pinto z Goddardova ústavu pro výzkum vesmíru (Goddard Institute for Space Studies) však syntetizoval formaldehyd v prebiotické atmosféře chudé na vodík.40 I při dalších modelových pokusech s atmosférou chudou na vodík vznikaly abiotické organické sloučeniny.41 V roce 1951 uveřejnil Melvin Calvin z Kalifornské university v Berkeley zprávu o syntéze organických sloučenin bombardováním směsi vody a oxidu uhličitého alfa částicemi.42

Obsah kyslíku na dávné Zemi a v její atmosféře

Všechny modely vylučují přítomnost kyslíku

Existuje množství různých modelů prebiotické atmosféry. Každý vědec používá jeden z těchto modelů, aby prokázal, že chemické stavební kameny života mohly být vytvořeny za zvolených podmínek. Z experimentálních prací vychází najevo zajímavý a do určité míry překvapivý poznatek, že syntéza aminokyselin a dalších nezbytných organických molekul je v určitém rozsahu nezávislá na specifických detailech experimentálních podmínek. Jak vyplývá z kapitoly 3, ať už jsou ve výchozí atmosféře jako zdroj uhlíku a dusíku použity CH4 a NH3 nebo CO2 a N2, jsou výsledkem podobné produkty. Z tohoto důvodu se zkoumání prebiotické atmosféry, jakkoli fascinující, jeví jako podružné, s výjimkou základního požadavku, který stojí v centru teorie chemické evoluce, tj., že prebiotická atmosféra nemohla obsahovat žádné, ani nepatrné množství volného (molekulárního) kyslíku (O2).

Vyloučení kyslíku je nezbytné ze dvou důvodů. Za prvé podléhají všechny organické sloučeniny (jako např. nezbytné chemické prekurzory nebo stavební kameny, které se musely nahromadit, aby mohla chemická evoluce pokračovat) v přítomnosti kyslíku rychlému rozkladu. Za druhé, pokud by byl molekulární kyslík přítomen i jen ve stopovém množství, organické molekuly by se nemohly vůbec tvořit. Shklovskii a Sagan k tomu poznamenali: "Pokud se podmínky laboratorního pokusu změní na oxidující, organické syntézy se skutečně zastaví."43 Všechny modelové pokusy zmiňované v kapitole 3 jsou značnou měrou inhibovány kyslíkem. Žádná z životně nezbytných molekul, např. aminokyselin, by se nemohla vyvořit za oxidujících podmínek, a i kdyby k tomu nějakou náhodou došlo, rychle by se rozložila. Chemická evoluce by byla neuskutečnitelná. K tomu se vyslovili také Fox a Dose,44 kteří sestavili šest důvodů, proč primordiální atmosféra nemohla obsahovat žádné významné množství kyslíku. Dva z jejich důvodů jsou pozoruhodné: (1) "laboratorní pokusy prokazují, že chemická evoluce... by byla značně inhibována kyslíkem,"45 a (2) "organické sloučeniny, které... se během chemické evoluce hromadily na zemském povrchu, by nezůstaly v průběhu geologicky přijatelné doby stabilní."46

Fox a Dose zastávali přesvědčení, že se chemická evoluce uskutečnila, a předkládají uvedené důvody spolu s ostatními jako důkaz redukující atmosféry. Tvrdí, že jelikož to chemická evoluce vyžaduje, muselo být volného kyslíku v prebiotické atmosféře zanedbatelné množství.

Fox a Dose nejsou jediní, kdo uvažují tímto způsobem. Walker47 také usuzuje, že "nejpádnějším důkazem" bezkyslíkaté atmosféry je sám fakt, že chemická evoluce proběhla. Tato úvaha je sice dostatečná pro vytvoření hypotézy, není však dostatečná jako důkaz její pravdivosti.

Nebudeme přihlížet k tomuto "nejpádnějšímu" důkazu bezkyslíkaté (bez volného kyslíku) atmosféry, protože je založen na důkazu v kruhu. Takováto logika je stěží vědecká a jednoduše považuje za pravdivou hypotézu, kterou teprve vytváří. Zkontrolujme tedy důkazy o obsahu kyslíku v atmosféře dávné Země bez toho, že bychom předem předpokládali redukující atmosféru. Nejprve vezmeme v úvahu zdroje kyslíku, a pak přezkoumáme mineralogické důkazy pocházející z údobí, kdy byl kyslík součástí atmosféry. Tak můžeme určit, kdy a jak dlouho byla zemská atmosféra bez kyslíku.

Zdroje volného kyslíku pro zemskou atmosféru

Existují nejméně tři možné zdroje volného kyslíku v atmosféře dávné Země: sopečné exhalace (a komety / meteority), fotodisociace vody a fotosyntéza, která je spojena s živými organismy. Uvažujme každý z těchto zdrojů vzhledem k množství kyslíku, jaké produkuje, a vzhledem k jeho pravděpodobné existenci během geologické historie.

Sopečné exhalace jako možný zdroj volného kyslíku. Již dříve se předpokládalo, že zemská atmosféra vznikla následkem sopečných erupcí, při nichž se uvolňovaly různé plyny. Mohl mezi nimi být i volný kyslík (O2). Plyny, doprovázející v současnosti sopečné erupce, obsahují zejména CO2, H2O a malé množství H2S, SO2 a N2, ale žádný volný kyslík. Vezmeme-li v úvahu vysokou teplotu v sopkách a značnou reaktivitu kyslíku, nemůže nás tato skutečnost udivit. Při zvýšených teplotách (600-800oC) by kyslík reagoval s minerálními látkami v zemi a výsledkem by byla neoxidující směs plynů. Představa, že tehdejší sopečné emise mohly uvolnit do prebiotické atmosféry jakékoliv podstatné množství volného kyslíku, je tedy značně diskutabilní.48

Fotodisociace vody jako možný zdroj volného kyslíku. Dalším uvažovaným zdrojem volného kyslíku v dávné atmosféře je fotodisociace vody v atmosféře vlivem ultrafialového záření:

2 H2O + (hn ) energie ultrafialového světla = 2 H2 + O2.

Odhady, provedené od šedesátých let, které se týkaly množství volného kyslíku uvolněného do prebiotické atmosféry fotodisociací vody, se pohybují v rozmezí 10-15 - 0,25 PAL (present atmospheric level, tj. koncetrace kyslíku vztažená k jeho koncentraci v současné atmosféře). Různé odhady jsou uvedeny v tabulce 5-1 a stručně shrnuty v dalším textu. Je užitečné si uvědomit, že v tabulce 5-1 je koncentrace kyslíku vyjádřena dvěma způsoby, tj. PAL a MR (mixing ratio = relativní zastoupení kyslíku v současné atmosféře), a platí, že 1,0 PAL = 0,21 MR.

Bekner a Marshall49 provedli jako první kvantitativní odhad koncentrace kyslíku v dávné atmosféře pocházející z fotodisociace vodní páry. Podle nich byla tato koncentrace 10-3 PAL.

Brinkmann50 počítal množství O2 produkovaného fotodisociací a spotřebovaného při oxidaci hornin a dalších pochodech. Dospěl k výsledku, že alespoň 25 % současné hladiny (0,25 PAL) kyslíku existovalo během 99 % geologického času. V důsledku toho usuzoval: "Nezdá se, že by chemická evoluce mohla probíhat v takové atmosféře."51 Zastánci neutrální nebo redukující dávné atmosféry nesouhlasili s tak vysokou hladinou O2 vzniklou fotodisociací H2O. Například Walker52 označil Brinkmannův předpokladu, že rychlost úniku vodíku z atmosféry je rovna rychlosti fotolýzy vody, za chybný. Sám však musí předpokládat, že sopečný zdroj vodíku byl značně větší, než množství vodíku mizejícího do prostoru po fotolýze vody. Z tohoto důvodu by musely být v dávné minulosti sopečné zdroje plynů mnohem větší než dnes. Van Valen53 měl také námitky proti Brinkmannově studii, ale nepředložil alternativní řešení, pouze uvedl, že existují důležité a dosud nevysvětlené problémy týkající se vytvoření kyslíku v atmosféře.

Vzhledem k zásadní důležitosti této otázky přezkoumal Caver54 množství kyslíku uvolněného fotodisociací během prekambria; uvažoval při tom větší zastoupení vodní páry v atmosféře než předchozí práce. Výsledky jeho studie poukazují na teplejší a mnohem vlhčí podnebí v prekambriu; koncentrace volného kyslíku mohla přitom dosáhnout 10 % současné hladiny (0,1 PAL). Pokud byly v prekambriu rychlosti oxidací při zemském povrchu podstatně větší než dnes, byla hladina kyslíku pravděpodobně 0,01 - 0,1 PAL.

Holland55 konstatoval, že několik procent současné hladiny kyslíku v atmosféře bylo jistě přítomno před 2,9 x 109 lety. Jak je ale patrné z tabulky 5-1, odhady spadají do příliš širokého rozpětí hodnot, než aby bylo možné vytvořit konečný závěr. V tabulce 5-1 jsou pro dokreslení značné nejistoty kolem koncentrace kyslíku uvedeny i další odhady, o kterých se v textu nezmiňujeme.56 Současná literatura se zabývá jedinou představou a to, že dávná atmosféra obsahovala mnohem více kyslíku, než si dosud kdokoliv představoval. Důležitý podíl na této představě mají měření, která naznačují, že několik milionů let staré hvězdy podobající se slunci emitují až 104 krát více UV záření než současné Slunce.57 Vlivem této větší intensity UV by mohlo být zvýšeno relativní zastoupení O2 při povrchu Země 104 až 106krát nad standardní hodnotu 10-15, což by ovlivnilo všechny odhady koncentrace kyslíku.58

Vysoký odhad koncentrace O2 je podporován údaji z Apolla 16, které naznačují, že vlivem fotodisociace vodní páry ve vrchní vrstvě atmosféry vzniká velké množství volného kyslíku. UV spektrografická kamera z Apolla 16 odhalila masivní mrak atomárního vodíku obalujícího Zemi a sahajícího až asi 65 000 km do prostoru. Tento vodík pochází zjevně z fotodisociace vodní páry. Ve starší zprávě týkající se těchto výsledků se uvádí, že získané informace "poskytují pevnou podporu teorii, která za primární zdroj současného kyslíku považuje štěpení vodní páry vlivem slunečního ultrafialového záření" na rozdíl od obvykle předpokládané fotosyntézy.59

George Carruthers,60 hlavní výzkumník zodpovědný za spektrografickou kameru na Apollu 16, následně uvedl, že množství kyslíku uvolněného fotodisociací bylo v prvních zprávách nadsazeno. To znamená, že fotodisociace nebyla, jak bylo původně uváděno, primárním zdrojem kyslíku. (Více detailů týkajících se výsledků měření Apollo 16 lze nalézt ve zprávě Carrutherse a spol.)61 Carruthers souhlasí s ostatními pracovníky, že v sekundární atmosféře prebiotické Země bylo přítomno malé množství volného kyslíku. Avšak bez volného kyslíku (a tedy bez ozónu) by mohlo sluneční ultrafialové záření pronikat do mnohem nižších na vodu bohatých vrstev atmosféry, než je tomu v současnosti. Rychlost disociace vody by tedy mohla být mnohem větší a rychlost tvorby kyslíku by byla značně vyšší než v současnosti. Lze se tedy domnívat, že fotodisociace vodní páry mohla zajišťovat dostatečné množství kyslíku v prebiotické atmosféře (snad až 1 % atmosféry neboli 0,05 PAL), takže se mohla vytvořit ozónová vrstva. Účinná ozónová clona by umožnila, omezením nepříznivého vlivu slunečního UV záření pronikajícího k zemskému povrchu, proliferaci živých organismů.

Pokud jde o destrukci organických sloučenin kyslíkem, Carruthers uznává, že by probíhala, ale ne tak rychle jako současné oxidace, protože kyslík byl mnohem zředěnější a nespolupůsobil při bakteriálním rozkladu.62 Vezmeme-li ale v úvahu předpokládanou dobu trvání chemické evoluce, bylo by i malé množství kyslíku velmi škodlivé. Jestliže bylo přítomno malé množství kyslíku, byly důležité prekurzorové molekuly velmi pravděpodobně rozloženy (oxidovány) nebo byla jejich tvorba úplně znemožněna.

Živé organismy a organické molekuly potřebují ochranu před ultrafialovým zářením, kterou jim poskytuje ozónová vrstva, ale přítomnost kyslíku zabraňuje vývoji takových živých systémů a biologických molekul. Tento cyklický paradox je hlavním problémem při konstrukci modelu vývoje života. Jaké množství kyslíku je potřeba k tvorbě ozónové vrstvy a jaké maximální množství kyslíku může být tolerováno při syntéze molekulárních prekurzorů života? Těmto dvěma otázkám se budeme dále věnovat.

Berkner a Marshall63 byli mezi prvními, kdo hodnotili vztah mezi O2 a O3 vzhledem k chemické evoluci. Předpokládají, že když koncentrace O2 dosáhla 10-2 PAL, vzniklá koncentrace O3 byla dostatečně velká, aby zabránila průniku smrtícího UV do vrchní vrstvy oceánu. Když dosáhla hladina O2 10-1 PAL, koncentrace O3 byla dostatečná k pohlcení veškerého UV záření o vlnové délce menší než 300 nm. Za těchto okolností bylo poprvé možné, aby se život přemístil z moře na pevninu. Po Berknerovi a Marshallovi zkoumali i jiní vědci vznik a vývoj ozónové vrstvy.64

Byla vypracována hypotéza, že k vytvoření biologicky účinné ozónové vrstvy je potřeba velmi malé koncentrace atmosférického kyslíku (asi 10-3 PAL). Vezmeme-li však v úvahu několik dalších faktorů, zdá se, že bylo potřeba 0,1 PAL kyslíku. Carver65 při posuzování dostupných informací dospěl k závěru, že by se biologicky účinná ozónová vrstva vytvořila, jakmile by obsah kyslíku přesáhl 0,01 PAL.

Krátce řečeno, vývoj ozónové vrstvy zjevně vyžaduje vyšší koncentrace kyslíku (0,01 až 0,1 PAL), než byl původní předpoklad, tedy 10-3 PAL. Zda se tato koncentrace volného kyslíku vytvořila pouze fotodisociací vody, nebo kombinovaným působením fotodisociace a fotosyntézy v řasách atd., je obtížné zjistit. Není dosud známo, jakou rychlostí je volný kyslík odstraňován reakcí s redukujícími plyny, jako je metan, nebo minerály jako je Fe3O4. V každém případě se zdá být zřejmé, že volný kyslík byl produkován fotodisociací od dávných dob a že tento zdroj volného kyslíku fungoval až do vytvoření takové koncentrace volného kyslíku, která umožnila vytvoření ozónové vrstvy jako filtru krátkovlnného ultrafialového záření (<300 nm), čímž byla produkce kyslíku v atmosféře pod ozónovou vrstvou fakticky zastavena.

Protože k utvoření účinné ozónové vrstvy je potřeba jen nízká hladina kyslíku, mohla krýt tato vrstva Zemi ještě před počátkem života. Tento názor však do této oblasti výzkumu vnáší rozpory.

Představa časné ozónové vrstvy má dva důsledky:

1) nutnost postulovat jiné zdroje energie pro prebiotické syntézy organických molekul než UV záření a

2) nutnost alternativního scénáře, který by umožnil průběh syntézy dostatku organických molekul a jejich následnou ochranu v oxidujícím prostředí.

Živé organismy jako zdroj volného kyslíku. Protože sopečné erupce nebyly zřejmě zdrojem volného atmosférického kyslíku a fotodisociace poskytovala volný kyslík jen do té doby, než byla vytvořena ozónová vrstva (patrně mezi 0,01 a 0,1 PAL kyslíku), všeobecně se soudí, že současných 21 % volného atmosférického kyslíku bylo a je výsledkem fotosyntézy v živých rostlinách. Obvykle se předpokládá, že tento přechod z předpokládaných bezkyslíkatých podmínek k současným 21 % volného kyslíku proběhl před 1-2 miliardami let. Obrázky 5-1 a 5-2 ilustrují odhady několika vědců týkající se zvyšování koncentrace kyslíku v čase.

Současné paleontologické důkazy však naznačují existenci podstatně více oxidující atmosféry dříve než před 1-2 miliardami let. Na začátku této kapitoly jsme hovořili o stáří prvního života na Zemi. Některé z těchto živých forem zřejmě produkovaly kyslík, úroveň jeho tvorby však stále zůstává sporným bodem. Mezi prvními organismy mohly být anaerobní bakterie, a v tom případě by atmosféra mohla být bezkyslíkatá. Walker66 odhaduje stáří prvních autotrofních organismů na 3,5 miliardy let, počátek bakteriální fotosyntézy klade do doby před 3 miliardami let a fotosyntézu zelených rostlin asi před 2,5 miliardami let. Kyslík produkující organismy (cyanobakterie / sinice) by tak jistě existovaly před 2,8 x 109 lety a snad mnohem dříve (možná před 2,9-3,1 miliardami let). Podle Schopfa67 vytvářely tyto organismy proměnlivou hladinu volného kyslíku. Nejprve byl kyslík spotřebováván vlivem redukujících minerálních látek (hlavně železnatých sloučenin). Pak se množství kyslíku měnilo v závislosti na jeho přístupu k dalším redukujícím minerálům, sopečným emisím atd. až do doby, kdy asi před 2 miliardami let dosáhla jeho koncentrace poměrně konstantní hladiny. Až do nedávna ale mnoho vědců předpokládalo, že malé množství kyslíku existovalo ještě před 2 miliardami let. Walker přemítal: "Je těžké vysvětlit, proč zůstával tlak kyslíku nízký téměř 2 miliardy let poté, co se objevila na scéně fotosyntéza zelených rostlin."68

Na základě narůstajícího množství důkazů utvořil Walker závěr, že kyslík, pocházející z fotosyntézy, se objevil před více než 3,8 miliardami let a doba existence prebiologické atmosféry musela tedy být "z geologického hlediska poměrně krátká."69

Z informací o zastoupení izotopů síry v prekambrických minerálech usuzovali Churkov a spol. na "... existenci organismů redukujících sírany a přítomnost podstatného množství kyslíku v pozemské atmosféře před 3 miliardami let nebo dříve."70 Podobně Eichmann a Schidlowski ukázali na základě výzkumu izotopů uhlíku, že "již před více než 3 miliardami let byla fotosyntézou vyprodukována většina z kyslíku, který kdy byl uvolněn do atmosféry. Tento kyslík je nyní vázán především ve formě Fe2O3 a SO42- a jen 5 % tohoto množství je ve formě volného plynu v atmosféře."71 Také informace Schidlowskeho a spol.72 neprokazují žádnou dlouhodobou změnu v izotopovém složení uhličitanů od doby před 3 miliardami let. V podstatně novější studii ukazuje Schidlowski, že "stálost izotopového poměru mezi redukovaným a oxidovaným uhlíkem v geologických vzorcích z různých dob lze nejlépe interpretovat jako výraz biologické aktivity během posledních 3,5 x 109 let (nebo možná 3,8 x 109 let)."73 Broecker74 považuje stabilitu poměru 13C/12C ve fanerozoických (mladší než 0,6 miliardy let) mořských uhličitanech za svědectví o tom, že obsah kyslíku musel být srovnatelný s jeho současnou hodnotou. Pokud je tento princip správný pro fanerozoické uhličitany, měl by také být správný pro uhličitany staré 3 miliardy let. Musíme tedy prohlásit, že současná hladina kyslíku existovala již před 3 miliardami let. Na základě informací, získaných Schidlowskim, vyvodili jiní vědci, že 80 % současné hladiny kyslíku existovalo během minulých 3,0 miliard let.75

Kyslík produkující organismy vytvořily pravděpodobně velmi staré vápencové usazeniny (např. Bulawayan, 2,7-3,0 miliardy let) stejným způsobem, jakým se vytvářejí současné vápencové usazeniny vlivem řas. Podle množství vápence ve starých ložiscích lze usuzovat na to, že tehdejší hladina O2 byla významná. Někteří autoři, např. Rutten76, nesouhlasí s tímto závěrem a tvrdí, že protože byla koncentrace O2 před 2,7 miliardami let jen 1 % současné úrovně, musel být metabolizmus tehdejších organismů tvořících vápencové usazeniny odlišný od současných řas. Protože nejsou známy žádné objektivní důvody podobné změny v metabolismu řas, je jediným důvodem podobného předpokladu touha prokázat existenci bezkyslíkaté prebiotické atmosféry. Stejně přijatelné nebo přijatelnější vysvětlení množství vápence ve starých ložiscích je, že hladina O2 v těchto dobách byla právě taková, jak odpovídá množství nalezeného vápence.

Z této části kapitoly týkající se zdrojů volného atmosferického kyslíku vyplývá jako nejpravděpodobnější následující scénář. Dávná sekundární atmosféra obsahovala především N2, H2O a CO2. Fotodisociací pak byla vyprodukována určitá nepatrná koncentrace volného kyslíku, zvýšená později fotosyntézou. Jakmile dosáhla hladina kyslíku koncentrace 0,01 až 0,1 PAL (samotnou fotodisociací nebo její kombinací s fotosyntézou), vytvořila se účinná ozónová vrstva a zastavila fotodisociaci ve spodní vrstvě atmosféry. Zbývající vzrůst koncentrace kyslíku na současnou úroveň byl způsoben pouze fotosyntézou. Současné paleontologické údaje a skutečnost, že se živé organismy objevily před 3,5 miliardami let, naznačují, že tento vzrůst koncentrace kyslíku mohl proběhnout velmi dávno v geologické historii (před více než 3 miliardami let).

Tento scénář odkryl dvě významné otázky. První z nich je, jak vysoká hladina kyslíku byla vytvořena samotnou fotodisociací vody před vznikem života. Druhá pak, zda by tato hladina volného kyslíku nepříznivě ovlivňovala tvorbu a trvání organických biomonomerů. První otázkou jsme se již zabývali a zjistili jsme, že současné odhady obsahu O2 v dávné atmosféře, pocházejícího z fotodisociace, se pohybují v rozmezí 10-15 PAL až 10-1 PAL. Levin tvrdí: "Je to široké rozmezí i pro výzkumy paleoatmosféry. Je tedy potřeba pokračovat v bádání na tomto poli."77 I na druhou otázku je obtížné nalézt odpověď a ty, které byly navrženy, jsou jen kvalitativní. Například:

Pomalá oxidace většiny organických sloučenin probíhá i při nízké koncentraci kyslíku a její rychlost ještě značně vzroste za přítomnosti ultrafialového záření. Tyto a další argumenty uváděné v této souvislosti jsou tak závažné, že se dlouhodobější zachování organických sloučenin v prebiotickém oceánu zdá být nemožné poté, co se kyslík stal součástí zemské atmosféry,.78

Vyjdeme-li ze současného modelu tvorby ozónu, můžeme také říci, že horní limit koncentrace volného kyslíku uvolněného pouhou fotodisociací vody, byl 0,01 až 0,1 PAL. Jak jsme již uvedli, značně spornou otázkou je, zda mohl být tento horní limit koncentrace kyslíku skutečně dosažen pouhou fotodisociací. Nejnižší současný odhad 10-15 PAL je jistě pro tvorbu ozónové vrstvy příliš nízký, kdežto 10-1 PAL je horní limit jako takový. Jedno je jisté - jestliže následující výzkum potvrdí, že samotná fotodisociace umožnila tvorbu biologicky účinné ozónové vrstvy, bude nevyhnutelné věnovat se řešení dalšího problému. V dávné atmosféře by byl totiž dostatek kyslíku na to, aby došlo k účinnému zastavení tvorby a akumulace biomonomerů, a tím k zamezení průběhu chemické evoluce.

Geologické nálezy vztahující se k určení obsahu volného kyslíku v atmosféře během různých stadií geologické historie

Výsledky fyzikálního výzkumu atmosféry nejsou sice jednoznačné, pokud se týká obsahu kyslíku v dávné atmosféře, ale přinejmenším připouštějí možnost, že dávná atmosféra byla oxidující. Tato možnost se staví proti obvyklé představě, že tehdejší Země byla redukující. Přezkoumejme tedy poznatky a obvyklé důvody, které vedou k tvrzení o redukujících podmínkách na dávné Zemi a v její atmosféře.

Úvahy o volném atmosférickém kyslíku, odvozované z nálezů minerálů, se opírají o oxidační stupeň prvků ve vrstvách minerálů, které se utvořily během různých geologických fází. Například při reakci

PbS + 2O2 ----> PbSO4

probíhající při teplotě 25oC je rovnovážný tlak kyslíku potřebný pro oxidaci PbS 10-63 atm. Tento rovnovážný tlak je tak malý, že kdyby byl nějaký kyslík přítomen, došlo by k oxidaci PbS na PbSO4. Pokud je tedy v hornině vyšší obsah PbS proti PbSO4, dá se logicky předpokládat, že byla utvořena v bezkyslíkatém prostředí. Podobně, je-li hojněji zastoupen PbSO4 než PbS, lze se domnívat, že byl při vzniku horniny přítomen kyslík. Je poučné si povšimnout, že podobný vztah můžeme nalézt i u jiných minerálů:

Redukovaná forma Oxidovaná forma

(utvořená za bezkyslíkatých (utvořená za přítomnosti

podmínek) kyslíku)

Fe3O4 (magnetit) Fe2O3 (hematit)

UO2 - U3O8 (uraninit) UO3

PbS (galenit) PbSO4

ZnS (wurtzit) ZnSO4 nebo ZnSO4 . 7H2O

Fe1-xS (pyrhotit) FeSO4 . 7H2O

Z termodynamiky vyplývá, že rovnovážné tlaky kyslíku pro oxidace sulfidů (PbS, ZnS a FeS) na odpovídající sírany (SO42-) jsou nižší než rovnovážný tlak pro přeměnu

U3O8 - UO2 na UO3 (pO2 = 10-21 - 10-23 atm.)

Rovnovážný tlak kyslíku pro přeměnu Fe3O4 na Fe2O3 (pO2 = 10-72 atm) je dokonce menší než hodnoty pro oxidace sulfidů. Vyčerpávající přehled různých prvků a jejich oxidačních stupňů, které jsou využívány v tomto typu výzkumu, byl podán Ruttenem.79

Základní předpoklady. Interpretace údajů o oxidačních stupních minerálů závisí na dvou základních otázkách: Jak dlouho trvá oxidace daného minerálu? Jak dlouho byl daný minerál vystaven působení atmosféry během své tvorby nebo během přemísťování a ukládání? Obvykle se předpokládá, že minerály bez kyslíku, či v nižších oxidačních stupních, byly utvořeny v bezkyslíkaté atmosféře. To však není jediná možnost. Musíme také brát do úvahy reakční rychlost (kinetiku). Předpovědi vycházející z termodynamické rovnováhy mají význam jen v případě dostatečného časového údobí. Pokud není minerál dostatečně dlouho v kontaktu s atmosférou nebo s vodou nasycenou atmosférickými plyny během transportu a ukládání, nedojde k ustavení rovnováhy. Protože jsou některé z těchto reakcí při okolních teplotách velmi pomalé, neznamená nezbytně přítomnost redukovaného nebo nepřítomnost zcela oxidovaného minerálu, že atmosféra neobsahovala kyslík. Na podporu tohoto tvrzení uvádíme v následujících odstavcích několik příkladů.

Charakteristické příklady minerálů: oxidy železa a uranu.

1. Oxidy železa

Oxidy železa nejsou nepochybným důkazem přítomnosti kyslíku v dávné atmosféře. Je to nejlépe patrné z oblastí stability různých minerálů železa za různých přirozených podmínek pH a oxidačně-redukčního potenciálu. Pokud klesne hladina kyslíku ze současné úrovně na 0,01 PAL, oblast stability se změní jen málo (viz obrázek 5-3). To znamená, že stabilita a podmínky ukládání oxidů železa jsou ovlivněny jen nepatrně. Rutten vyvozuje: "Z toho vyplývá, že důkazy ve prospěch bezkyslíkaté atmosféry nemohou vycházet z rovnováhy anorganických reakcí,... ale z jejich kinetiky,"80 nebo z rychlosti, při níž oxidace probíhá.

Podle Foxe a Dose81 nejsou známy žádné údaje týkající se rovnováhy mezi FeO, Fe3O4 a Fe2O3 jako funkce koncentrace O2. Holland82 vysvětluje, že Fe2O3 je stabilní za extrémně nízkých koncentrací O2, což vysvětluje jeho přítomnost v sedimentech starých více než 2,5 miliardy let, kdy podle předpokladu neobsahovala atmosféra žádný kyslík. Jiní geologové však využívají přítomnosti Fe2O3 jako důkazu podstatné hladiny O2 v prebiotické atmosféře. Davidson83 tvrdí, že mocná ložiska hematitu (Fe2O3) jsou slučitelná pouze s přítomností volného kyslíku v povrchových vodách v době již před 3,4 miliardami let. Skutečnost, že v sedimentech všech stáří byly nalezeny všechny oxidační stupně železa od FeO, přes Fe2O3 k FeS2 naznačuje, že přítomnost daného minerálu určují místní a nikoliv všeobecné podmínky. Například před 0,4 až 0,5 miliardami let (když hladina kyslíku dosahovala současné úrovně) byly ukládány redukované minerály v bezkyslíkatých vodách (místní bezkyslíkaté prostředí) podobných dnešnímu Indickému oceánu, kde se v hloubce pod 150 metrů nevyskytuje v podstatě žádný volný kyslík. Nález těchto sedimentů by mohl vést k chybnému závěru, že tehdejší atmosféra neobsahovala kyslík. Krecji-Graf vyvozuje na základě těchto poznatků, že geologické důkazy nemohou být použity k utvoření všeobecného závěru týkajícího se zemské atmosféry.84 Jiné vysvětlení pozorovaných variací oxidačních stavů železa je, že se hladina kyslíku v dávné atmosféře měnila. Schopf udává, že takové podmínky existovaly pravděpodobně před 3,0 miliardami let a dříve.85

Názor, že červené naplaveniny (Fe2O3) tvoří nejlepší indikátor prvního výskytu kyslíku, je stále velmi rozšířený86 navzdory neprůkaznému vztahu mezi hladinou kyslíku a oxidačním stavem železa. Podle Walkera87: "Přítomnost vrstevnatých útvarů obsahujících oxidy železa v Isuaských skalách západního Grónska naznačuje, že se kyslík uvolněný při fotosyntéze objevil na Zemi před 3,8 miliardami let." Walkerova úvaha předpokládá, že před tím, než se začal uvolňovat kyslík při fotosyntéze, se objevilo množství metabolických procesů, které mohly ovlivňovat atmosféru (např. fermentace, bakteriální fotosyntéza a redukce síranů). Existence prebiotické atmosféry složené z dusíku, oxidu uhličitého a vodní páry musela být tedy z geologického hlediska velmi krátká.

2. Oxidy uranu

Poněkud jasnější obrázek poskytují sedimenty UO2 - UO3 z útesu Dominion a z oblasti Witwatersrand v jižní Africe. Minerální ložiska obsahují uraninit (UO2), galenit (PbS), pyrit (FeS2) a zlato. Všechna tato ložiska vznikla sedimentací. Minerály pocházejí ze zvětralé žulové skály a byly neseny prudce tekoucími řekami do vějířovité delty, kde říční proud ztrácel rychlost a minerály se postupně usazovaly. To prokazuje přítomnost ohlazených sférických zrn uraninitu o průměru zhruba 0,0655 mm v sedimentu. Tento druh sedimentu se nazývá úlomkovitý nebo nanesený sediment a okolí, v němž byl uložen, se nazývá říční vějířovitá delta (fluvial fan-delta) nebo copánkovitá aluviální nížina (braided alluvial plain). Je jisté, že minerály byly při svém zvětrávání a ukládání před zhruba 2,5 - 2,75 miliardami let v kontaktu s atmosférou. Protože tyto naplaveniny obsahují redukované formy minerálů, obvykle se soudí, že k jejich utvoření došlo v prostředí bez kyslíku. Jak ale Miller a Orgel vysvětlují: "... tyto minerály mohly být ukládány za místních redukujících podmínek, nebo proces probíhal, aniž došlo k utvoření rovnováhy s atmosférou."88 Většina geologů učiní pohotový závěr, že minerály byly v rovnováze díky výše zmíněnému transportu řekou. To je však také otázka kinetiky. Pokud byly například minerály přenášeny a ukládány velmi rychle, nebyl čas na utvoření rovnováhy s atmosférou. Za těchto podmínek by se ukládal uran v nižším oxidačním stupni jako UO2 i v přítomnosti podstatných hladin O2. Ale k rychlé sedimentaci nemohlo dojít, když jsou jednotlivá zrna minerálů dobře ohlazena a roztříděna.

Jinou možností je, že tyto sedimenty byly transportovány během doby ledové. Velmi chladné okolí by snížilo rychlost reakce UO2 s O2. UO2 by tedy byl ukládán i v přítomnosti O2. Existují doklady o přítomnosti ledovců v jižní Africe před 2,5 miliardami let a zároveň se ukazuje, že současné deposity UO2 se vytváří v chladném prostředí. Je skutečností, že se v řece Indu v současném Pákistánu vyskytuje úlomkovitý uraninit.89 Tyto úvahy a údaje ukazují, že je nezbytné znát rychlosti jednotlivých reakcí před utvořením konečného závěru.

Trow navrhl mechanizmus pro ukládání depozitů uranu ve Witwatersrandu a v jezeře Elliot v kyslíkaté atmosféře během dob ledových, pro které je typický nedostatek CO2. Tvrdí, že "bezkyslíkatá atmosféra v těchto dobách (před 2,25 - 2,5 miliardami let) zřejmě neexistovala."90

Je možno souhlasit s Walkerem91, že důkaz existence bezkyslíkaté atmosféry, který poskytují úlomkovitý uraninit a pyrit ve Witwatersrandu není nevyvratitelný. Z Hollandovy 92 práce vyplývá, že horní limit relativního zastoupení kyslíku kolem 1 % je v souladu s existencí úlomkovitého uraninitu. Podle Muiry93 je úlomkovitý pyrit (redukovaný minerál) běžný dokonce i dnes. Skinner94 shrnul různé příspěvky na pracovním setkání "U.S. Geological Survey Quartz-Pebble Workshop" prohlášením, že současné teorie týkající se atmosférického vlivu na rudy, jaké jsou ve Witwatersrandu, pokulhávají, současné úvahy nejsou správné a absence atmosférického kyslíku nemůže spolehlivě vysvětlit existenci slepenců uranoželeznatých křemenných oblázků. Navrhoval neutrálnější atmosféru jako alternativu k redukující i oxidující atmosféře.

Mnoho nejasností kolem shromažďování minerálů bylo rozřešeno D.E. Grandstaffem,95 který vytvořil kinetickou analýzu oxidace U4+ na U6+. Uraninit (UO2-U4+) je termodynamicky nestabilní při tlaku kyslíku větším než přibližně 10-21 atmosféry. Nicméně Grandstaffova kinetická analýza dokládá, že uraninit mohl bez oxidace přetrvat za tlaku kyslíku až 0,01 PAL. Tak usazování uranoželeznatých slepenců

...nepotřebuje nezbytně bezkyslíkatou atmosféru, jak bylo dříve navrhováno, ale může se uskutečnit v atmosféře obsahující malé množství kyslíku, které odpovídá fotodisociaci vodní páry a omezené aerobní fotosyntéze.96

Důležitým závěrem Grandstaffovy kinetické analýzy je, že tvorba minerálů v nižším oxidačním stupni, jakými jsou UO2 nebo Fe3O4, nevyžaduje absenci volného kyslíku v atmosféře. Z toho vyplývá, že obvyklé argumenty, které zakládají existenci redukující atmosféry na přítomnosti redukovaných minerálů, jsou nepřesvědčivé. K oxidaci U4+ nedojde v atmosféře, která je přinejmenším středně oxidující, tj. do 0,01 PAL. Již dlouho je známo, že termodynamicky příznivou reakci je třeba jednoduše chápat jako reakci, která je dovolena, nemusí však probíhat. Pouze kinetickou analýzou mohou být získány detaily o tom, zda reakce proběhla a jakou rychlostí.

Souhrn poznatků získaných z minerálů. Detailně jsme přezkoumali důkazy o existenci redukující prebiotické atmosféry, odvozené z údajů o minerálech uranu a železa. Protože nelze s jistotou popsat kinetiku oxidací těchto minerálů, je obtížné utvořit věrohodný závěr, zda existovala doba, kdy zemská atmosféra postrádala volný kyslík. Erich Dimroth a Michael Kimberley prozkoumali řadu minerálů včetně sloučenin uranu a železa, a uzavírají:

V rozložení uhlíku, síry, uranu nebo železa v sedimentech jsme nenalezli žádný důkaz o tom, že by kdykoli během celé geologické historie, zaznamenané v dobře konzervovaných naplavených horninách, existovala bezkyslíkatá atmosféra.97

Souhrn a závěr

V této kapitole jsme se zamýšleli nad třemi důležitými otázkami. Nejprve jsme se zabývali časem, který měla chemická evoluce k dispozici. Na základě důkazů nalezených v molekulárních fosiliích a mikrofosiliích bylo zjištěno, že život vznikl téměř okamžitě (v geologickém časovém měřítku) po té, co zemská kůra vychladla a stabilizovala se, tj. před zhruba 4,0 miliardami let. Tím zbylo jen málo přes 100 miliónů let (či ještě méně) pro uskutečnění chemické evoluce. Dále jsme přezkoumali vlastnosti a složení ranné zemské atmosféry a zjistili jsme, že nebyla silně redukující, jak se předpokládalo v posledních třiceti letech. Názor vědecké veřejnosti na dávnou atmosféru se v současnosti mění. V době, kdy vzniká tato kniha, je široce přijímána představa o podstatně neutrálnější prebiotické atmosféře složené z CO2, N2, H2O a snad z 1 % H2. Existuje sporný bod v tom, zda dávná Země a její atmosféra mohly být opravdu oxidující.

Nakonec jsme se věnovali důležité otázce obsahu kyslíku na dávné Zemi.

Byly přezkoumány tři oblasti důkazů, které vypovídají o existenci volného kyslíku v prebiotické zemské atmosféře: (1) informace dokládající přítomnost kyslík produkujících živých forem v horninách starších než 3,5 x 109 let, (2) informace o existenci oxidovaných minerálních látek v horninách starších než 3,5 x 109 let a (3) výpočty určující, že až do 0,1 PAL mohl být O2 produkován fotodisociací vody. Ačkoliv nelze učinit žádný přesný závěr týkající se hladiny kyslíku v atmosféře dávné Země, jsou tyto výsledky velmi sugestivní.

Hromadění důkazů o tom, že na dávné Zemi existovala oxidující atmosféra, zvýrazňuje tajuplnost vzniku života. Pokud budou důkazy tohoto typu i nadále přibývat, budou se muset teorie chemické evoluce odvolávat na náhodný výskyt proměnného nebo místního redukujícího prostředí na prebiotické Zemi. Tato mikroprostředí mohla existovat (jak ukazují redukované minerály). Otázkou je, zda byla vhodná a zda existovala dost dlouho, aby v nich mohl vzniknout život. Naděje na nalezení takové vhodné lokality, trvající na prebiotické Zemi dostatečně dlouhou dobu, je velmi malá.

Modelové pokusy popsané v kapitole 3 převážně předpokládaly silně redukující atmosféru. Tyto pokusy pokrývají údobí od Millerova klasického experimentu zveřejněného v roce 1953 do poloviny sedmdesátých let. Ve skutečnosti si lze všimnout myšlenkového posunu k méně redukující atmosféře, k němuž došlo v době letu Vikingu na Mars. Ačkoliv, jak vyplývá z kapitoly 5, byly významné důkazy, svědčící o přítomnosti kyslíku na dávné Zemi, k dispozici již před rokem 1976, teprve objev oxidujícího prostředí na Marsu bez známek života pomohl obrátit pozornost vědců na otázku historie kyslíku na Zemi.

Nyní lze očekávat, že pokusy s prebiotickou atmosférou budou přehodnoceny ve světle důkazů o tom, že dávná Země a její atmosféra byly pravděpodobně méně redukující, než se původně soudilo, nebo možná dokonce oxidující. Jsou určité náznaky toho, že již probíhají pokusy prováděné s podstatně přijatelnější atmosférou. Několik pokusů používajících neutrálnější až slabě oxidující atmosféru bylo zmíněno již dříve v této kapitole. Jejich výsledkem byly obvykle méně rozmanité a méně koncentrované produkty, než látky získané při srovnatelných experimentech, které probíhaly za více redukujících podmínek. Zdá se však, že to nijak nezmenšuje obecné přesvědčení o tom, že chemická evoluce na této planetě zcela jistě proběhla.

Literatura


Zpět     Dále